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INTRODUCTION 

Conformal mapping has been used in the past to generate magnet 

poleface contours.' The present effort extends a notion considered 

previously in which a plane of symmetry was introduced. One further 

mapping permits the plane of symmetry to be transformed into a curved 

surface of bifurcation. A magnetostatic problem set on one side may 

be continued into the other side thereby providing an exact solution on 

both sides. An application is made for the Beijing SynchrotronL booster 

magnet. 

COMBIYED FUNCTION MAGNET 

The desired poleface contour is considered to be one of the surfaces 

for which the magnetostatic potential V is a constant. As V approaches 

some limit V. the contour is usually reduced to a sequence of straight lines 

in the z-plane which are then related to the real axis of the s-plane by a 

suitable transformation. For a combined function magnet the previous 

z-plane is designated as the r-plane and a transformation is made to the 

z-plane using r = zGkz2$k'z3. This distorts the generator elements 

(V=V,) from linear to curved segments. The mappings are illustrated in 

Figures (l-3). 

Quantitatively one bends 

whose interior angles are ind 

may be written as4 

the real axis of the s-plane into a polygon 

icated in Figure 1. The result in the r-plane 
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where '-a, -1, -y, -T, T, and 6 are bend points in the s-plane. For the 

magnetostatic problem shown in Figure 1 where U is the stream function 

and V is the potential function, the result of transforming to the r-plane 

represents a symmetrical dipole and is shown in Figure 2. 

To produce the right hand side of a combined function magnet the 

r-plane is distorted into the z-plane using 

where k is the field index and k' is the gradient index. 

Magnetostatic considerations are readily inserted into a w-plane 

which is obtained from the s-plane using bends only at +T. Thus 

From Figure 4 it may be seen that a uniform field in the w-plane yields 

an excitation in the s-plane in which the exciting currents are at 

infinity. The complex potential is 

This representation of the complex potential wi 11 be modified later in 

order to locate the excitation current at a fin ite distance. 

Starting with the w-plane and defining for convenience 
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one has 

and for the magnetic field 

The constant q1 as shown in Figure 2 is the imaginary part of r on the sur- 

face V = V, associated with the curve of bifurcation U = 0. By integrating 

Zn Eq. (6) along the line p = 0 from cp = 0 to $I = $J~ one obtains Cl. Thus 

where 

Equation (7) may be used to relate V, to an assigned magnetic induction 

B. at the origin x = 0, y = 0 

To find the magnetic field gradient on the median plane differentiate 

Eq. (7) with respect to z, set y = 0 and take the imaginary part. Thus 

where from Eq. (6) 



with 

and from Eq. (2) 

The contour represented by V = V1 or @ = $, may be found using 

Eq. (6) with 

Thus 

where r is related to z by Eq. (2). If Eq. (7) is evaluated for values 

of s in Eq. (15) the magnetic field may be found along the contour. Note 

that p is a convenient variable for parametrizing all variables of interest. 

Any method of numerical integration of Eqs. (8), (12), and (16) will 

yield results for the desired quantities provided that B. k k' q1 w $1 6 

cx y and T are given. However, the design problem is to find these constants 

in terms of physically specifiable characteristics of the magnet and its 

field. By adding two more unknowns, p. the value of p at the maximum excursion 

of the gradient from the "ideal" gradient, and pe the value of p at the 

maximum extent of the "good field" region, one may utilize information to be 

specified at these points. Table 1 includes a comparison of these unknowns 

with quantities and conditions to be specified. Note that the "ideal" field 

,on the median plane is 



and that the deviation of the actual median plane field from the "ideal" 

field is 

Table 1. 

Unknown 

BO 
k 

k' 

q1 
w 

@ 
6 

Comparison of Unknowns with Given Quantities 

Given Unknown Given 

BO 
a aH'/H 

Y YO 
at p. 

k Y nH"/H y yo=O at PO 

k' -7 aH'/H 
Y YO 

at Pe 

y1 pO 
X at pe 

w pe nH"/H 
Y YO 

=0 at p= 0 

$1 

PC5 

The unknowns that are directly given are B. k and k' which characterize 

the "ideal" field. The unknown q1 may be found from the half gap y1 using 

Eq. (2). Tentative choices are made for w '+ and pg. Generally w must be 

greater than ~/2 in order to have a maximum x associated with the edge of 

the pole. If the corresponding y at this location is too large w must be 

increased. The value of '+ must be less than TT order that the contour not 
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coincide with the generator surface. For p6 no guide is available but a 

number around 10 seems to correspond to reasonable yoke locations. 

Ultimately CQ and pg are varied to give the desired pole width and backleg 

location. 

It is to be noted that the central gradient divided by the central 

field (field index) is 

and that the gradient of 

field (gradient index) is 

the gradient of the field divided by~the central 

Furthermore, as may be seen later, Eqs. (18) and (19) are unchanged after 

the coils are located at finite distances. Hence it is to be noted that the 

calculated field index and gradient index will equal those calculated from 

the "ideal" field provided 

This condition is adopted as a given quantity and appears as the last entry 

in Table 1. If Eq. (20) is used to solve for y four unknowns remain: PO 

pe cx and -c. These may be found from the four remaining given quantities 

or conditions. 

INITIALIZATION OF PARAMETERS 

iis) 

Trial values for PO pe a IY are calculated from a simplified model5 in 

which 5 is considered large with respect to T but small with respect to 1. 
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For simplicity the return yoke position is removed to infinity (6 = a). 

Expressions for the first four derivatives of the field at the origin 

are identical with those of the "ideal" field if 

From Eq. (20) and the assumption that -c is negligible and that 6 = a, 

Eq. (21) gives 

Solving for a0 and y. one has 

and 

For the excess over the "ideal" field Eq. (11) gives approximately 

For convenience let 

Then 



At rl=rl 

and at T-I = ne 

Since G(s) 2 1, Eq. (8) gives 

From Eq. (29) 

Equation (28) may be solved for E and Eq. (30) then yields ne by solving a 

cubic. Equation (26) gives 5, and 5,. However Eq. (12) by noting that 

G(t) ; 1 gives in particular 

This together with 5, may be used in Eq. (13) to give an estimate of -r. 
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With this value of 'C Eq. (13) may again be used to obtain PO 

Finally using E found from Eq. (28), Eq. (26) yields cx and y. In this 

manner sufficiently accurate trial values for PO pe a and T may be found. 

ITERATIVE PROCEDURE 

If F(p M. -r) designates the gradient in Eq. (11) and p(p 01 -c) is given 

by Eq. (12) then 

where the values of PO pe a 'I on the right hand side have been assigned 

trial values. The quantities on the left hand side are specified by the 

designer. Generally speaking F. is the maximum allowed positive excursion 

from the "ideal" gradient and Fe is the maximum allowed negative excursion 

from the "ideal" gradient. By definition -$ is found using the "ideal" 

gradient at PO. For example, a zero gradient magnet will have -$ = 0. 

The value of p is chosen via Eq. (14) from a value of x equal to the 

"good field width" for the right or left hand side of the magnet which 

ever is under consideration. Numerical differentiation is employed 
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to obtain all coefficients. Matrix inversion then gives the increments 

ape Ap,@ Aa AT which are used to obtain improved trial values. The process 

is repeated until a suitable convergence criterion is met. 

Having found the unknowns for an assumed +1 and p6 the process is 

repeated for three additional cases in which C+ is incremented by a small 

amount and pg incremented by a small amount. These four runs are used 

together with an assumed bilinear variation of xmax on the contour and x 
leg 

at the yoke with respect to $1 and p6 to yield new trial values for $1 and 

pg that will provide given polewidths and yoke positions. This operation 

is repeated until the changes in xmax and x leg are acceptably small. 

After the search mode has been executed and suitable constants found 

the contour mode is activated by using the parameters found to calculate 

z on the contour as a function of p from Eqs. (16) and (2). On this contour 

the magnetic field from Eq. (7) and the flux from Eq. (4) are also found. 

On the median plane Eq. (7) gives the field and Eq. (11) gives the gradient 

each as a function of p which in turn is converted to x using Eqs. (12) and 

(14). 

COMBINED FUNCTION MAGNET WITH COIL 

In order to insert a current filament at a finite distance in the 

w-plane of Figure 4 it is convenient first to transform to the x-plane using 

Figure 5 illustrates the current filament at x0 and its images necessary to 

preserve the previous constant potential surfaces. The multivalued 

potential V is represented in the h-plane as arising from double layers or 

cuts along the arcs shown. The complex potential for the current filament 

at ~~ and its images is 



If ho + m Eq. (39) is seen to approach Eq. (4) since from Figure 4 the 

fraction V,/V, is equal to +1/71. 

For a uniform current density block Eq. (39) may be generalized to 

at least when x refers to a location outside of the current block which is 

the present range of interest. The current density is 

where A is the cross sectional area of the block. 

Beth' has shown that if h(z) is analytic 

from which it also follows that 

Now Eq. (40) can be separated into two parts such that Eq. (42) may be 

applied to the first part and Eq. (43) to the second part. Thus 

A special case of Beth's result gives 
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Hence Eq. (44) becomes 

Note that W approaches the expression in Eq. (4) for sufficiently large lxol 

For reference also note that 

Equation (40) replaces Eq. (4) but the method remains the same except for 

the additional problem of determining ho from specified locations z. 

on the boundary of the current block. 

To begin then, z. is given for equally spaced intervals for each 

segment of the boundary. The corresponding r. are found using Eq. (2). 

Initial guesses for w. corresponding to x0 are made and r. found by 

integrating Eq. (6) from the origin. These r. are compared with the 

desired r. This change in r 
P 

is translated into a change in w. using the 

differential form of Eq. (6). In this manner improved values for w. are 

made and the process repeated until a convergence criterion is met. 

Since Eq. (40) has replaced Eq. (4) the fields now become 
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where 

The complex gradient becomes 

where 

On the median plane Eqs. (49) and (51) give 
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In general the parameter adjustment for PO pe cx and T proceeds as 

before except that Eq. (49) replaces Eq. (7) and Eq. (53) replaces 

Eq. (11). It has been noticed, however, that instabilities occur in 

taking numerical derivatives of Eq. (53). These instabilities are removed 

by turning on the change brought about by C(U) and D(v) very slowly. 

Thus for the kth iterate and using C(v) as an example 

where 

and AN(k) is the root mean square fractional difference in the variables 

from the (k-l)st iterate. Since the iteration proceeds until AN is less 

than .OOOl, the final Cused will be very close to Ccalc . 
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Figure 1. Initial Plane (generators on real axis) 

v-v, 

0 1 

Figure 2. Transformed Plane (straight line generators\ 

V=O 

/ 
P 



Z-pldne 

Figure 3. Conformal Mapping (generators distorted) 

W- r \ dne 

-v.= 0 \ , 

Figure 4. Intermediate Plane (real.axis is convenient stepping variable) 
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U=O 

Figure 5. Intermediate Plane (used to specify magnetostatics) 


